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Abstract: Predicting software fault is an important part of software engineering. Fault prediction means identifying modules that 

are prone to failure early in software development. It reduces time, effort and overall costs. Significantly improves the 

organization's start-up and profits by ensuring customer satisfaction. This field has attracted many researchers over the years to 

improve the overall quality of the software. Machine learning techniques are the most used techniques in this field today. Machine 

learning focuses on developing computer programs that may learn to grow and alter once exposed to new information.  

In this paper, we examine a study of the various software metrics used to predict software fault using machine learning 

algorithms and we also presented a survey of various machine learning techniques that will help professionals interested build a 

fault prediction model.   

 

IndexTerms – Software Fault Prediction, Machine Learning, Software Metrics, Prediction Techniques. 

I. INTRODUCTION 

Today we live in the world of computers where the software is used in almost all areas of life. In 2018, the global software 

development market is around $ 389 billion according to IT research and consultancy firm Statista [1]. These data show the 

importance of software. So it is necessary for software Development Company to develop error-free software. But it's practically 

not possible 100% error free software. We can reduce it by using it well known techniques called fault prediction models. 

Software fault prediction models are used to identify modules at an early stage of software development because detecting a fault 

at a later stage will increase the cost exceptionally high. So the quality will also decrease as it leads to customer dissatisfaction. So 

Software Fault Prediction models help the test team will focus more on modules that are prone to failures and optimize the use of 

resources [2]. 

Machine learning techniques play an important role in predicting software failures. Various researchers have demonstrated the 

importance of machine learning in software fault prediction and there is empirical evidence that the prediction model's 

performance is strongly influenced by the type of technique used. It is therefore essential to select the appropriate technique for 

the indicated dataset [3]. Therefore, this article presents various machine learning techniques that have been used in the field of 

predicting software defects by various researchers over the years. Changes in existing Machine Learning techniques that make 

them more effective on a daily basis and which attract many researchers in this field. A future dimension is also proposed to 

develop hybrid techniques for predicting software failures in order to improve overall software quality. Our next section discusses 

about software metrics and possibilities to use software metrics for software fault prediction, Section 3 discusses some selected 

machine learning techniques; Section 4 presents the related work carried out over the years by various researchers in 

chronological order, and finally section 5 presents the conclusions and future work. 

II. SOFTWARE METRIC 

The software metric is a measure of some software properties or its specifications. Software metrics are often used to evaluate 

software's ability to achieve a predefined goal. Software metric is a measure of some software properties [4]. Complexity, 

coupling and cohesion (CCC) metrics can be measured during software development stages, such as design or coding, and are 

used to evaluate software quality. Fault prediction metrics play the most important role in building a statistical forecasting model. 

Most fault prediction measures can be classified into two types: code measures and process measures. With code metrics such as 

dimensions, Hastead, McCabe, CK and OO metrics used, the absolute frequency of use of code metrics is higher than process 

metrics [5]. In the following some code metrics are as follows: 

2.1 Cyclomatic Complexity  
Measure the structural complexity of the code. It is created by calculating the number of different code paths in the program 

flow. A program with a complex control flow will require more testing to achieve good code coverage and will be less 

manageable [4]. 

2.2 Halsteads Product Metrics  

The measures were developed by the late Maurice Halstead in order to determine a quantitative measure of complexity 

directly from the operators and operands of the module, as well as from the program vocabulary, from the length of the program 

[5]. 

 

 

2.3 Product Metrics  

In Product Metrics contains lines of code (LOC) indicates the approximate number of lines in the code. The count is based on 

the code and is therefore not the exact number of lines in the source code. A very large number may indicate that a type or method 

is trying to do too much work and should be divided. Design measures calculated based on the requirements or the design 

document before the implementation of the system. Object-oriented metrics help identify failures and allow developers to see 

firsthand how to simplify their classes and objects [5]. 
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III. MACHINE LEARNING APPROACHES FOR FAULT PREDICTION 

Software fault prediction is the process of predicting which parts of software are subject to fault prone. By focusing on the fault 

prone files, testers can save on testing efforts. As mentioned above, it is important to detect the software defect / fault as early as 

possible to reduce testing costs. Therefore, the use of software metrics produced at an early stage in the software development 

process is a superiority of this research. The idea behind predicting software fault is to use measurements taken from the 

development process, e.g. source code that can be found in the software metrics. Many approaches have been designed to perform 

software fault prediction, starting with a simple equation, statistical analysis, expert estimation and machine learning. Of all the 

approaches, machine learning has proven to be the best research-based approach [6]. To automatically predict the fault prediction 

module, a wide range of machine learning algorithms are used. The machine learning algorithm is known as classification. The 

classification procedure basically means class labeling for a new sample based on a certain set of samples that have been labeled. 

Different machine learning algorithms will be discussed in this subsection. 

3.1 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a machine learning technique to correctly classify invisible data by building an N-

dimensional hyperplane. Finding the optimal hyperplane that separates the cluster from the vector is the main activity of modeling 

the SVM. Therefore, observations with a dependent variable category will separate side by side with observations with another 

category of the aircraft. The term support vector refers to all vectors close to the hyperplane. SVM modeling finds a hyperplane 

oriented to maximize the margin between support vectors. SVM can handle the nonlinear separator between points using the 

kernel function to map data to a different space, so a hyperplane will be used to separate the space [7]. 

3.2 Random Forest 

Random forest is another type of machine learning consisting of many classification trees. Classification trees are decision 

trees that represent an important step forward in knowledge discovery and data mining. The random forest classifier provides a 

prediction with great precision. The classification algorithm classifies a new object from an input vector. The input vector is 

written on each tree in the forest, where each tree provides a classification result. The tree votes for this class, so the forest will 

choose most of the grading votes [8]. 

3.3 Bootstrap Aggregating  

The next machine learning method is the bagging algorithm or known as bootstrap aggregation. Bootstrap aggregation is a 

technique that will repeatedly sample a series of data based on a uniform probability distribution. The size of each bootstrap 

sample and the original data are identical. An instance may occur multiple times during the same training set because sampling is 

done with replacement. On the other hand, another instance could be omitted from the training package. Each sample has a 1- (1-

1 / N) N probability of being selected. Therefore, a bootstrap sample can contain approximately 63% of the original training data 

in sufficiently large data of N. An instance will be assigned to a class after training the K classifiers if the class receives the most 

votes. 

3.4 Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) is recently popular, such as multilayer Perceptron (MLP). MLP could be used to solve 

almost any problem, such as pattern recognition, interpolation etc. Direct acting neural networks are trained with a reverse 

propagation algorithm which consists of two steps (forward and reverse pass). The pass forward presented a voice to the neural 

network which will propagate through the network. 

3.5 Naive Bayesian(Naïve Bayes) 

Naive Bayesian is a fairly effective classification method that is easy to implement. The Bayesian classification consider as 

supervised learning strategy and statistical techniques for classification. The basic algorithm is a probability according to Bayes' 

theorem, which assumes that the existence of class characteristics does not depend on another existence of characteristics [9]. 

Naïve Bayes techniques basically work in two stages: Training stage and Prediction stage. 

IV. LITERATURE REVIEW 

This section presents some latest ongoing research performed in software fault prediction using machine learning techniques. 
4.1 Classification Approach 

Ezgi Erturk et al. [10] proposed a new Adaptive Neuron Fuzzy Inference System (ANFIS) method for predicting software 

fault. Data is collected from the PROMISE software engineering repository and McCabe's measurements are selected because 

they fully respond to the programming effort. The results obtained were 0.7795, 0.8685 and 0.8573 respectively for the SVM, 

ANN and ANFIS methods.  

David Gray et al. [11] in this paper, the emphasis is on classification analysis rather than classification performance, it was 

decided to classify training data rather than having an interesting set of testers. It involves manual analysis of predictions made by 

classifiers of support vector machines using data from the NASA Metrics Data Program repository. The goal was to better 

understand how classifiers separated training data. 

Surndha Naidu [12] in this paper they focused on finding the total number of fault in order to reduce time and costs. Here, 

for the classification of faults, they have use the ID3 algorithm (Iterative Dichotomiser 3). ID3 is an algorithm invented by Ross 

Quinlan used to generate a decision tree from a set of data. Faults were classified according to five attribute values such as 

volume, program duration, difficulty, effort and time estimate. 

Mie Thet Thwin [13] in this paper, two types of neural network techniques are performed. The first focuses on predicting the 

number of faults in a class and the second focuses on predicting the number of changed rows per class. Two neural network 

models are used: the Ward neural network and the general regression neural network (GRNN) and perform the analysis on the 

NASA dataset. 

4.2 Clustering Approach 
Xi Tan et al. [14] in this paper, a new method to predict software fault based on functional clusters of programs to improve 

performance. Most of the methods proposed in this sense foresee errors per class or file. Experiments concluded that cluster-based 

models can significantly improve recall from 31.6% to 99.2% and accuracy from 73.8% to 91.6%.Open in Google Translate 

Feedback.  
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Jaspreet Kaur et al. [15] in the paper, k-means clustering approach was used to find the fault proneness of object-oriented 

systems and found that k-means clustering techniques show an accuracy of 62.4%. It also showed a high and low detection 

probability value. 

4.3 Association Rule Mining Approach 

Alina Campan et al. [16] proposed a new algorithm for discovering ordinal association rules of any length of interest in 

datasets. Data sets that contain multiple attributes with domains of similar or comparable values are common in data mining. 

Gabriela Czibula et al. [17] proposed a new supervised method for detecting software entities with architectural flaws, based 

on the exploration of relational association rules, called SDDRAR (detection of software design errors using relational association 

rules). Experiments are performed on open source software to detect defective classes in object-oriented software systems, for 

example the FTP4J project is a Java implementation of a complete FTP client. Each of these four versions has 27 classes (and 8 

interfaces excluded from the analysis) and the class names are the same for each version.  

D. Rodrguez et al. [18] have proposed EDER-SD (Evolutionary Decision Rules for Subgroup Discovery), an algorithm based 

on an evolutionary calculation that induces rules that describe only fault-prone modules. EDER-SD has the advantage of working 

with continuous variables because the conditions of the rules are defined using ranges. 

4.4 Hybrid Approach 

Kamei et al. [19] proposed a method of predicting the failure-prone module that combines exploration of association rules 

and analysis of logistic regression. Predictive performance of the proposed method with different thresholds of each measure of 

interest of the rule (support, confidence and elevation) using a module defined in the Eclipse project. 

Martin Shepperd et al. [20] studied on publicly available NASA data sets have been widely used in this research to classify 

software modules into defect and non-defect categories. In this regard, Promise Data Repository 2 has played an important role in 

making software engineering data sets publicly available. For example, 96 software error data sets are available. Among them are 

13 of the 14 datasets provided by NASA and which were also available for download from the NASA Data Program (CDM) 

website. 

In the table 4.1 it gives the overview of the literature on the use of various Machine Learning methods for software fault 

prediction. This table summarizes the applied modeling techniques, the datasets used and the empirical configuration of many 

studies. As shown in table 4.1, a huge number of approaches have been applied to find the best approach to predict software fault 

in term of accuracy and comprehensibility. 

   

Table 4.1: Literature Overview of the Application of Machine Learning Approaches for Software Fault Prediction 

 

Authors Dataset Metrics Approach Result 

Catal et al. [21] 5 public NASA 

datasets 

13 method level metrics Random Forest 

Naive Bayes J48 

Immunos 1 & 2 

CLONALG AIRS1 & 

2 AIRS 2 Parallel 

Naïve Bayes algorithm is 

better for smaller dataset, 

while Random forest 

algorithm perform best for 

larger dataset 

 

Catal et al. [22] 6 Object Oriented 

 metrics of 

Chidamber 

Kemerer metrics, 4 

metrics from KC1 

projects, and 

Halstead & 

McCabe metric 

WMC (Weighted Methods per 

Class) 

DIT (Depth of Inheritance Tree) 

RFC (Response for a Class) 

NOC (Number of Children) 

CBO (Coupling Between Object 

Classes) 

LCOM (Lack of Cohesion in 

Methods) 

Percent Pub Data Access To 

Pub Data Dep On Child Fan In 

 

AIRS - Artificial 

Immune Recognition 

System algorithm 

The best fault prediction result 

is combination between CK 

metrics and the lines of code 

(LOC) metric 

Shanthini [23] Public domain KC1 

NASA data set, 

method level and 

class level 

metrics 

21 method-level metrics 

proposed by Halstead and 

McCabe. 

10 class-level 

oriented metrics are used 

Naïve Bayes 

SVM 

K-Star 

Random Forest 

Precision, recall and accuracy 

of SVM show better result 

compare to other machine 

learning methods for both 

class and method level 

metrics. 

 

Mundada et al. 

[24] 

PROMISE 

repository: 

JM1/Software 

Defect Prediction 

Object Oriented CK metrics Artificial Neural 

Network and 

Resilient  

Back Propagation 

ANN show better accuracy 

compare to previous research 

Bishnu et al. 

[25] 

AR3, AR4, AR5 

from Promise data 

Iris dataset 

Lines of Code (LoC) metric, 

Unique Operator (UOp), 

Cyclomatic Complexity (CC), 

Total Operator (TOp), Unique 

Operand (UOpnd), Total 

Operand (TOpnd) 

Quad Tree-Based K-

Means Clustering 

Algorithm 

K-Means algorithm more 

efficient in the term of 

iterations except for AR5, and 

the SSE. 
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Dejaeger et al. 

[26] 

An open source 

Eclipse Foundation 

& NASA IV&V 

facility dataset 

Halstead, Line Of Code, and 

McCabe complexity metrics 

Fifteen Bayesian 

Network (BN) 

classifiers 

Compared to common Naïve 

Bayes classifier, Augmented 

Naive Bayes classifiers show 
better performance. 

Okutan et al. 

[27] 

Promise data 

repository 

9 datasets from Promise data 

repository, NOD for the number 

of developers and LOCQ for the 

source code quality. 

Bayesian networks LOC, LOCQ, and RFC are the 

most effective metrics. 

Kumar et al. 

[28] 

45 real-life datasets 

from the PROMISE 

repository 

Chidamber and Kemerer Java 

Metrics 

Majority Voting 

Ensemble (MVE) 

method 

MVE approach performs the 

best result. Fault prediction 

model developed using MVE 

method consume less fault 

removal cost as compare to 

other techniques 

Alighardashi 

et al. [29] 

NASA and 

PROMISE with 10 

datasets 

20 object oriented metrics Feature selection 

method by using 

combination of filter 

feature selection 

methods 

The results show the 

effectiveness of the used 

method. Therefore, our 

proposed WF method can find 

the best features with the 

highest speed for the 

improvement of the fault 

prediction accuracy. In this 

research, we use the five filter 

methods 

V. CONCLUSION AND FUTURE SCOPE 

 In this paper, we provide a detailed survey of various Machine Learning (ML) techniques for software fault prediction. 

Software fault prediction is needed to minimize software testing costs and times. Multiple error-prone modules require more 

resources. According to the survey, we can see that the software flaw is indeed a big problem in software engineering. Predicting 

software fault modules using different ML techniques aims to improve the quality of the software development process. The 

purpose of this survey is to access the research work conducted by various researchers on ML techniques to predict software fault 

in order to help interested professionals build a model to predict fault. After a detailed examination, we have found that the 

random forest, naive Bayes, and the neural network are good enough for software fault prediction, but no single technique is 

appropriate for all types of data. It is therefore preferable to choose the result in the forecast model set. Therefore, in the future, 

we are planning to implement a heterogeneous ensembling to increase the overall efficiency of the system. 
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