
© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004551 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 434

Software Fault Prediction Using Machine

Learning Approaches: A Survey

1Ashwni Kumar, 2Mariya Khatoon, 3Dr.D.L.Gupta
1M.Tech Student, 2M.Tech Student, 3Associate Professor

1Department of Computer Science and Engineering,
1K.N.I.T, Sultanpur, U.P, India.

Abstract: Predicting software fault is an important part of software engineering. Fault prediction means identifying modules that

are prone to failure early in software development. It reduces time, effort and overall costs. Significantly improves the

organization's start-up and profits by ensuring customer satisfaction. This field has attracted many researchers over the years to

improve the overall quality of the software. Machine learning techniques are the most used techniques in this field today. Machine

learning focuses on developing computer programs that may learn to grow and alter once exposed to new information.

In this paper, we examine a study of the various software metrics used to predict software fault using machine learning

algorithms and we also presented a survey of various machine learning techniques that will help professionals interested build a

fault prediction model.

IndexTerms – Software Fault Prediction, Machine Learning, Software Metrics, Prediction Techniques.

I. INTRODUCTION

Today we live in the world of computers where the software is used in almost all areas of life. In 2018, the global software

development market is around $ 389 billion according to IT research and consultancy firm Statista [1]. These data show the

importance of software. So it is necessary for software Development Company to develop error-free software. But it's practically

not possible 100% error free software. We can reduce it by using it well known techniques called fault prediction models.

Software fault prediction models are used to identify modules at an early stage of software development because detecting a fault

at a later stage will increase the cost exceptionally high. So the quality will also decrease as it leads to customer dissatisfaction. So

Software Fault Prediction models help the test team will focus more on modules that are prone to failures and optimize the use of

resources [2].

Machine learning techniques play an important role in predicting software failures. Various researchers have demonstrated the

importance of machine learning in software fault prediction and there is empirical evidence that the prediction model's

performance is strongly influenced by the type of technique used. It is therefore essential to select the appropriate technique for

the indicated dataset [3]. Therefore, this article presents various machine learning techniques that have been used in the field of

predicting software defects by various researchers over the years. Changes in existing Machine Learning techniques that make

them more effective on a daily basis and which attract many researchers in this field. A future dimension is also proposed to

develop hybrid techniques for predicting software failures in order to improve overall software quality. Our next section discusses

about software metrics and possibilities to use software metrics for software fault prediction, Section 3 discusses some selected

machine learning techniques; Section 4 presents the related work carried out over the years by various researchers in

chronological order, and finally section 5 presents the conclusions and future work.

II. SOFTWARE METRIC

The software metric is a measure of some software properties or its specifications. Software metrics are often used to evaluate

software's ability to achieve a predefined goal. Software metric is a measure of some software properties [4]. Complexity,

coupling and cohesion (CCC) metrics can be measured during software development stages, such as design or coding, and are

used to evaluate software quality. Fault prediction metrics play the most important role in building a statistical forecasting model.

Most fault prediction measures can be classified into two types: code measures and process measures. With code metrics such as

dimensions, Hastead, McCabe, CK and OO metrics used, the absolute frequency of use of code metrics is higher than process

metrics [5]. In the following some code metrics are as follows:

2.1 Cyclomatic Complexity
Measure the structural complexity of the code. It is created by calculating the number of different code paths in the program

flow. A program with a complex control flow will require more testing to achieve good code coverage and will be less

manageable [4].

2.2 Halsteads Product Metrics

The measures were developed by the late Maurice Halstead in order to determine a quantitative measure of complexity

directly from the operators and operands of the module, as well as from the program vocabulary, from the length of the program

[5].

2.3 Product Metrics

In Product Metrics contains lines of code (LOC) indicates the approximate number of lines in the code. The count is based on

the code and is therefore not the exact number of lines in the source code. A very large number may indicate that a type or method

is trying to do too much work and should be divided. Design measures calculated based on the requirements or the design

document before the implementation of the system. Object-oriented metrics help identify failures and allow developers to see

firsthand how to simplify their classes and objects [5].

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004551 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 435

III. MACHINE LEARNING APPROACHES FOR FAULT PREDICTION

Software fault prediction is the process of predicting which parts of software are subject to fault prone. By focusing on the fault

prone files, testers can save on testing efforts. As mentioned above, it is important to detect the software defect / fault as early as

possible to reduce testing costs. Therefore, the use of software metrics produced at an early stage in the software development

process is a superiority of this research. The idea behind predicting software fault is to use measurements taken from the

development process, e.g. source code that can be found in the software metrics. Many approaches have been designed to perform

software fault prediction, starting with a simple equation, statistical analysis, expert estimation and machine learning. Of all the

approaches, machine learning has proven to be the best research-based approach [6]. To automatically predict the fault prediction

module, a wide range of machine learning algorithms are used. The machine learning algorithm is known as classification. The

classification procedure basically means class labeling for a new sample based on a certain set of samples that have been labeled.

Different machine learning algorithms will be discussed in this subsection.

3.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a machine learning technique to correctly classify invisible data by building an N-

dimensional hyperplane. Finding the optimal hyperplane that separates the cluster from the vector is the main activity of modeling

the SVM. Therefore, observations with a dependent variable category will separate side by side with observations with another

category of the aircraft. The term support vector refers to all vectors close to the hyperplane. SVM modeling finds a hyperplane

oriented to maximize the margin between support vectors. SVM can handle the nonlinear separator between points using the

kernel function to map data to a different space, so a hyperplane will be used to separate the space [7].

3.2 Random Forest

Random forest is another type of machine learning consisting of many classification trees. Classification trees are decision

trees that represent an important step forward in knowledge discovery and data mining. The random forest classifier provides a

prediction with great precision. The classification algorithm classifies a new object from an input vector. The input vector is

written on each tree in the forest, where each tree provides a classification result. The tree votes for this class, so the forest will

choose most of the grading votes [8].

3.3 Bootstrap Aggregating

The next machine learning method is the bagging algorithm or known as bootstrap aggregation. Bootstrap aggregation is a

technique that will repeatedly sample a series of data based on a uniform probability distribution. The size of each bootstrap

sample and the original data are identical. An instance may occur multiple times during the same training set because sampling is

done with replacement. On the other hand, another instance could be omitted from the training package. Each sample has a 1- (1-

1 / N) N probability of being selected. Therefore, a bootstrap sample can contain approximately 63% of the original training data

in sufficiently large data of N. An instance will be assigned to a class after training the K classifiers if the class receives the most

votes.

3.4 Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) is recently popular, such as multilayer Perceptron (MLP). MLP could be used to solve

almost any problem, such as pattern recognition, interpolation etc. Direct acting neural networks are trained with a reverse

propagation algorithm which consists of two steps (forward and reverse pass). The pass forward presented a voice to the neural

network which will propagate through the network.

3.5 Naive Bayesian(Naïve Bayes)

Naive Bayesian is a fairly effective classification method that is easy to implement. The Bayesian classification consider as

supervised learning strategy and statistical techniques for classification. The basic algorithm is a probability according to Bayes'

theorem, which assumes that the existence of class characteristics does not depend on another existence of characteristics [9].

Naïve Bayes techniques basically work in two stages: Training stage and Prediction stage.

IV. LITERATURE REVIEW

This section presents some latest ongoing research performed in software fault prediction using machine learning techniques.
4.1 Classification Approach

Ezgi Erturk et al. [10] proposed a new Adaptive Neuron Fuzzy Inference System (ANFIS) method for predicting software

fault. Data is collected from the PROMISE software engineering repository and McCabe's measurements are selected because

they fully respond to the programming effort. The results obtained were 0.7795, 0.8685 and 0.8573 respectively for the SVM,

ANN and ANFIS methods.

David Gray et al. [11] in this paper, the emphasis is on classification analysis rather than classification performance, it was

decided to classify training data rather than having an interesting set of testers. It involves manual analysis of predictions made by

classifiers of support vector machines using data from the NASA Metrics Data Program repository. The goal was to better

understand how classifiers separated training data.

Surndha Naidu [12] in this paper they focused on finding the total number of fault in order to reduce time and costs. Here,

for the classification of faults, they have use the ID3 algorithm (Iterative Dichotomiser 3). ID3 is an algorithm invented by Ross

Quinlan used to generate a decision tree from a set of data. Faults were classified according to five attribute values such as

volume, program duration, difficulty, effort and time estimate.

Mie Thet Thwin [13] in this paper, two types of neural network techniques are performed. The first focuses on predicting the

number of faults in a class and the second focuses on predicting the number of changed rows per class. Two neural network

models are used: the Ward neural network and the general regression neural network (GRNN) and perform the analysis on the

NASA dataset.

4.2 Clustering Approach
Xi Tan et al. [14] in this paper, a new method to predict software fault based on functional clusters of programs to improve

performance. Most of the methods proposed in this sense foresee errors per class or file. Experiments concluded that cluster-based

models can significantly improve recall from 31.6% to 99.2% and accuracy from 73.8% to 91.6%.Open in Google Translate

Feedback.

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004551 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 436

Jaspreet Kaur et al. [15] in the paper, k-means clustering approach was used to find the fault proneness of object-oriented

systems and found that k-means clustering techniques show an accuracy of 62.4%. It also showed a high and low detection

probability value.

4.3 Association Rule Mining Approach

Alina Campan et al. [16] proposed a new algorithm for discovering ordinal association rules of any length of interest in

datasets. Data sets that contain multiple attributes with domains of similar or comparable values are common in data mining.

Gabriela Czibula et al. [17] proposed a new supervised method for detecting software entities with architectural flaws, based

on the exploration of relational association rules, called SDDRAR (detection of software design errors using relational association

rules). Experiments are performed on open source software to detect defective classes in object-oriented software systems, for

example the FTP4J project is a Java implementation of a complete FTP client. Each of these four versions has 27 classes (and 8

interfaces excluded from the analysis) and the class names are the same for each version.

D. Rodrguez et al. [18] have proposed EDER-SD (Evolutionary Decision Rules for Subgroup Discovery), an algorithm based

on an evolutionary calculation that induces rules that describe only fault-prone modules. EDER-SD has the advantage of working

with continuous variables because the conditions of the rules are defined using ranges.

4.4 Hybrid Approach

Kamei et al. [19] proposed a method of predicting the failure-prone module that combines exploration of association rules

and analysis of logistic regression. Predictive performance of the proposed method with different thresholds of each measure of

interest of the rule (support, confidence and elevation) using a module defined in the Eclipse project.

Martin Shepperd et al. [20] studied on publicly available NASA data sets have been widely used in this research to classify

software modules into defect and non-defect categories. In this regard, Promise Data Repository 2 has played an important role in

making software engineering data sets publicly available. For example, 96 software error data sets are available. Among them are

13 of the 14 datasets provided by NASA and which were also available for download from the NASA Data Program (CDM)

website.

In the table 4.1 it gives the overview of the literature on the use of various Machine Learning methods for software fault

prediction. This table summarizes the applied modeling techniques, the datasets used and the empirical configuration of many

studies. As shown in table 4.1, a huge number of approaches have been applied to find the best approach to predict software fault

in term of accuracy and comprehensibility.

Table 4.1: Literature Overview of the Application of Machine Learning Approaches for Software Fault Prediction

Authors Dataset Metrics Approach Result

Catal et al. [21] 5 public NASA

datasets

13 method level metrics Random Forest

Naive Bayes J48

Immunos 1 & 2

CLONALG AIRS1 &

2 AIRS 2 Parallel

Naïve Bayes algorithm is

better for smaller dataset,

while Random forest

algorithm perform best for

larger dataset

Catal et al. [22] 6 Object Oriented

 metrics of

Chidamber

Kemerer metrics, 4

metrics from KC1

projects, and

Halstead &

McCabe metric

WMC (Weighted Methods per

Class)

DIT (Depth of Inheritance Tree)

RFC (Response for a Class)

NOC (Number of Children)

CBO (Coupling Between Object

Classes)

LCOM (Lack of Cohesion in

Methods)

Percent Pub Data Access To

Pub Data Dep On Child Fan In

AIRS - Artificial

Immune Recognition

System algorithm

The best fault prediction result

is combination between CK

metrics and the lines of code

(LOC) metric

Shanthini [23] Public domain KC1

NASA data set,

method level and

class level

metrics

21 method-level metrics

proposed by Halstead and

McCabe.

10 class-level

oriented metrics are used

Naïve Bayes

SVM

K-Star

Random Forest

Precision, recall and accuracy

of SVM show better result

compare to other machine

learning methods for both

class and method level

metrics.

Mundada et al.

[24]

PROMISE

repository:

JM1/Software

Defect Prediction

Object Oriented CK metrics Artificial Neural

Network and

Resilient

Back Propagation

ANN show better accuracy

compare to previous research

Bishnu et al.

[25]

AR3, AR4, AR5

from Promise data

Iris dataset

Lines of Code (LoC) metric,

Unique Operator (UOp),

Cyclomatic Complexity (CC),

Total Operator (TOp), Unique

Operand (UOpnd), Total

Operand (TOpnd)

Quad Tree-Based K-

Means Clustering

Algorithm

K-Means algorithm more

efficient in the term of

iterations except for AR5, and

the SSE.

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004551 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 437

Dejaeger et al.

[26]

An open source

Eclipse Foundation

& NASA IV&V

facility dataset

Halstead, Line Of Code, and

McCabe complexity metrics

Fifteen Bayesian

Network (BN)

classifiers

Compared to common Naïve

Bayes classifier, Augmented

Naive Bayes classifiers show
better performance.

Okutan et al.

[27]

Promise data

repository

9 datasets from Promise data

repository, NOD for the number

of developers and LOCQ for the

source code quality.

Bayesian networks LOC, LOCQ, and RFC are the

most effective metrics.

Kumar et al.

[28]

45 real-life datasets

from the PROMISE

repository

Chidamber and Kemerer Java

Metrics

Majority Voting

Ensemble (MVE)

method

MVE approach performs the

best result. Fault prediction

model developed using MVE

method consume less fault

removal cost as compare to

other techniques

Alighardashi

et al. [29]

NASA and

PROMISE with 10

datasets

20 object oriented metrics Feature selection

method by using

combination of filter

feature selection

methods

The results show the

effectiveness of the used

method. Therefore, our

proposed WF method can find

the best features with the

highest speed for the

improvement of the fault

prediction accuracy. In this

research, we use the five filter

methods

V. CONCLUSION AND FUTURE SCOPE

 In this paper, we provide a detailed survey of various Machine Learning (ML) techniques for software fault prediction.

Software fault prediction is needed to minimize software testing costs and times. Multiple error-prone modules require more

resources. According to the survey, we can see that the software flaw is indeed a big problem in software engineering. Predicting

software fault modules using different ML techniques aims to improve the quality of the software development process. The

purpose of this survey is to access the research work conducted by various researchers on ML techniques to predict software fault

in order to help interested professionals build a model to predict fault. After a detailed examination, we have found that the

random forest, naive Bayes, and the neural network are good enough for software fault prediction, but no single technique is

appropriate for all types of data. It is therefore preferable to choose the result in the forecast model set. Therefore, in the future,

we are planning to implement a heterogeneous ensembling to increase the overall efficiency of the system.

REFERENCES

[1] M. Jrgensen, K. Molkkenstvold, “how large are software cost overruns? A review of the 1994 CHAOS report,” Information

and Software Technology 48 (4) (2006) 297{301}.

[2] Rajkumar G and K.Alagarsamy, “The Most Common Factors For The Failure Of Software Development Project,” vol. 11, pp.

74-77, January 2013.

[3]Rathore, S. S., & Kumar, S, “A study on software fault prediction techniques Artificial Intelligence Review,” 1–73.

https://doi.org/10.1007/s10462-017-9563-5.

[4] E. E. Mills, Software metrics," 2000.

[5] A. Campan, G. Serban, T. M. Truta, and A. Marcus, “An algorithm for the discovery of arbitrary length ordinal association

rules,” DMIN, vol. 6, pp. 107-113, 2006.

[6] Catal, C., & Diri, B. (2009), “A systematic review of software fault prediction studies. Expert systems with applications,”

36(4), 7346-7354.

[7] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing,

Section 16.5, Support Vector Machines, Cambridge University Press, The 3rd Edition, 2007.

[8] Leo Breiman. “RANDOM FORESTS. Machine Learning,” pp. 5-32.2001.

[9] John, G. H., & Langley, P. “Estimating continuous distributions in Bayesian classifiers,” In the 11th Conference on

Uncertainty in artificial intelligence, pp. 338- 345,1995.

[10]E. Erturk and E. A. Sezer, “A comparison of some soft computing methods for software fault prediction,” Expert Systems

with Applications, 2014.

[11]D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,“Software defect prediction using static code metrics

underestimates defect-proneness,” in Neural Networks (IJCNN), The 2010 International Joint Conference on, pp. 1-7, IEEE,

2010.

[12]Naidu, M. Surendra, and N. GEETHANJALI,“Classification of Defects in Software using Decision Tree Algorithm.”

International Journal of Engineering Science and Technology (IJEST) 5.06 (2013).

[13]M. M. T. Thwin and T.-S. Quah, Application of neural networks for software quality prediction using object-oriented

metrics," Journal systems and software, vol. 76, no. 2, pp. 147-156, 2005

[14]Xi Tan, Xin Peng, Sen Pan,Wenyun Zhao, “Assessing software quality by program Clustering and Defect Prediction” 18th

Working Conference on Reverse Engineering 2011.

[15]Jaspreet Kaur, Parvinder S. Sandhu, “A k-means Based Approach for Prediction of Level of Severity of Faults in Software

systems”, Proceedings of international Conference on Intelligent Computational Systems, 2011.

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004551 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 438

[16]A. Campan, G. Serban, T. M. Truta, and A. Marcus, “An algorithm for the discovery of arbitrary length ordinal association

rules,” DMIN, vol. 6, pp. 107-113, 2006.

[17]G. Czibula, Z. Marian, and I. G. Czibula, “Detecting software design defects using relational association rule mining,”

Knowledge and Information Systems, pp. 1-33, 2012.

[18]D. Radjenovi_c, M. Heri_cko, R. Torkar, and A. Zivkovi_c, “Software fault prediction metrics: A systematic literature

review,” Information and Software Technology, vol. 55, no. 8, pp. 1397-1418 ,2013.

[19]Y. Kamei, A. Monden, S. Morisaki, and K.-i. Matsumoto, “A hybrid faulty module prediction using association rule mining

and logistic regression analysis,” in Proceedings of the Second ACM-IEE international symposium on Empirical software

engineering and measurement, pp. 279-281, ACM, 2008.

[20]M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: some comments on the nasa software defect datasets,” Software

Engineering, IEEE Transactions on, vol. 39, no. 9, pp. 1208 -1215, 2013.

[21]Catal, C., & Diri, B. (2009). “Investigating the effect of dataset size, metrics sets, and feature selection techniques on software

fault prediction problem,” Information Sciences, 179(8), 1040-1058.

[22]Catal, C., Diri, B., & Ozumut, B. (2007, June). “An artificial immune system approach for fault prediction in object oriented

software.,”In Dependability of Computer Systems, 2007. DepCoS-RELCOMEX'07. 2nd International Conference on (pp.

238-245). IEEE.

[23] A. Shanthini,, “Applying Machine Learning for Fault Prediction Using Software Metrics,” vol. 2, no. 6, pp. 274– 278, 2012.

[24]D. Mundada, A. Murade, O. Vaidya, and J. N. Swathi, “Software Fault Prediction Using Artificial Neural Network And

Resilient Back Propagation,” Int. J. Comput. Sci. Eng., vol. 5, no. 03, pp. 173–179, 2016.

[25]P. S. Bishnu. and V. Bhattacherjee, “Software Fault Prediction Using Quad Tree-Based K-Means Clustering Algorithm,” vol.

24, no. 6, pp. 1146–1150, 2012.

[26]K. Dejaeger, T. Verbraken, and B. Baesens, “Prediction Models Using Bayesian Network Classifiers,” vol. 39, no. 2, pp.

237–257, 2013.

[27]A. Okutan and O. Taner, “Software defect prediction using Bayesian networks,” no. 2, pp. 154–181, 2014.

[28]Kumar, L., Rath, S., & Sureka, A. (2017),”Using Source Code Metrics and Ensemble Methods for Fault Proneness

Prediction”. arXiv preprint arXiv:1704.04383.

[29]F. Alighardashi, M. Ali, and Z. Chahooki, “The Effectiveness of the Fused Weighted Filter Feature Selection Method to

Improve Software Fault Prediction,” no. 8, 2016.

http://www.jetir.org/

